[Bengio et al., 2015] Yoshua Bengio, Nicholas Leonard, and Aaron Courville. Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation. CoRR, abs/1308.3432, 2013.
[Bergstra et al., 2013] J. Bergstra, D. Yamins, and D. D. Cox. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In International Conference on Machine Learning (ICML), pages 115-123, Jun 2013.
[Han et al., 2016] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding. In International Conference on Learning Representations (ICLR), 2016.
[He et al., 2017] Yihui He, Xiangyu Zhang, and Jian Sun. Channel Pruning for Accelerating Very Deep Neural Networks. In IEEE International Conference on Computer Vision (ICCV), pages 1389-1397, 2017.
[He et al., 2018] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: AutoML for Model Compression and Acceleration on Mobile Devices. In European Conference on Computer Vision (ECCV), pages 784-800, 2018.
[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. CoRR, abs/1503.02531, 2015.
[Jacob et al., 2018] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2704-2713, 2018.
[Lillicrap et al., 2016] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous Control with Deep Reinforcement Learning. In International Conference on Learning Representations (ICLR), 2016.
[Mockus, 1975] J. Mockus. On Bayesian Methods for Seeking the Extremum. In Optimization Techniques IFIP Technical Conference, pages 400-404, 1975.
[Zhu & Gupta, 2017] Michael Zhu and Suyog Gupta. To Prune, or Not to Prune: Exploring the Efficacy of Pruning for Model Compression. CoRR, abs/1710.01878, 2017.
[Zhuang et al., 2018] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Jiezhang Cao, Qingyao Wu, Junzhou Huang, and Jinhui Zhu. Discrimination-aware Channel Pruning for Deep Neural Networks. In Annual Conference on Neural Information Processing Systems (NIPS), 2018.